Original article

HbA1c as a marker to reduce lower limb amputation in patients with type 2 diabetes mellitus

Abdelmarouf Hassan Mohieldein¹, Abaker Mohamed Abdelkarim², Fatin Mohammed Osman³, Elrasheed Ahmed Abdallah⁴, Mahadi Mohammed Ali⁵.

Abstract

Background: Diabetes mellitus is one of the most serious and prevalent chronic diseases worldwide. One of the most common complications of diabetes in the lower extremity is the diabetic foot ulcer which is the precursor to ~85% of lower extremity amputations in persons with diabetes.

Materials and Subjects: This is a case-control study which was carried out at Jabir Abu-Aliz Specialized Center, Khartoum State, Sudan between October 2006 and April 2007.

Forty type 2 diabetes cases with septic foot (group 1 cases), 40 type 2 diabetes cases without septic foot (group 2 cases), and 40 healthy controls participated in this study. Their demographic data were collected. Serum HbA1c levels were estimated by affinity chromatography method.

Results: The level of HbA1c was 9.947±1.40%, 7.908±0.45% and 6.462±0.07% in group 1, group 2, and the healthy control respectively. There was significant increase in percentage level of HbA1c in group 1 cases compared to group 2 cases and healthy control (p = 0.002, 0.001 respectively). We found very low correlation between fasting blood sugar and HbA1c in group 1 cases (r = + 0.331; p=0.042).

Conclusion: This study indicates that the progression to the complication of foot ulcer in type 2 diabetic patients was correlated to the level of HbA1c. These data may suggest a beneficial effect of considering measurement of HbA1c as a routine test especially for elderly diabetic patients with diabetes for long period. This may help to maintain blood glucose levels in the normal or near normal range and to provide an opportunity for patients to live out their normal life expectancies with minimal complications.

Key words: glycohemoglobin, neuropathy, septic foot, glycemic control.

Diabetes mellitus (DM) is one of the most serious and prevalent chronic diseases worldwide¹. It has become one of the major health problems with diabetic foot ulcer as one of the most important complications². It is estimated that 15% of patients with diabetes will develop a lower extremity ulcer during the course of their disease³, ⁴. The cumulative effects of neuropathy, deformity, high plantar pressure, poor glucose control, duration of diabetes, and gender are all contributory factors for foot ulceration⁵, ⁶.

Correspondence to Dr. Abdelmarouf Hassan Mohieldein, mobile:00966556876251; email: mabdelsamarouf@hotmail.com
While 14–20% of patients with foot ulcers will subsequently require an amputation, foot ulceration is the precursor to approximately 85% of the lower extremity amputations in persons with diabetes\(^7,8\). Glycosylated hemoglobin (HbA\(_{1c}\)) is the major glycohemoglobin species in human blood\(^9\). The percentage of HbA\(_{1c}\) in human blood depends on the concentration of glucose, the duration of glucose exposure to hemoglobin, and the turnover of erythrocytes\(^10\). Although not all diabetic foot disorders can be prevented, it is possible to effect dramatic reductions in their incidence and morbidity through appropriate evidence-based prevention and management protocols.

The objective of this study was exploiting HbA\(_{1c}\) as a predictive monitoring test of choice to reduce complications of diabetes mainly septic foot in type 2 diabetic patients. This was done by estimating the HbA\(_{1c}\) levels in type 2 diabetic patients with and without septic foot compared with healthy controls.

Material and Methods

Study design:
The study is a case-control study.

Study population and sample size:
The study was carried out on 40 type 2 diabetes cases with septic foot (group 1 cases), 40 type 2 diabetes cases without septic foot (group 2 cases), and 40 healthy controls. The ages for diabetic patients and healthy controls range between 50 to 70 years. Diabetic patients of groups (1 & 2) were randomly selected from the outpatient diabetes clinic at Jabir Abu-Aliz Specialized Center, Khartoum State, Sudan between January 2007 and April 2007. Diabetes was defined according to the World Health Organization (WHO) criteria\(^{11}\). Informed consent was obtained for each participant.

Preparation of blood samples:
Blood samples (5ml) were collected from the antecubital veins. The collected blood was allowed to clot for 30 minutes, and then centrifuged at 2000 g for 15 minutes for clear separation of serum.

Estimation for glycated hemoglobin:
Serum HbA\(_{1c}\) levels were estimated by affinity chromatography method. After preparing the hemolysate, where the labile fraction is eliminated, hemoglobins are retained by a cationic exchange resin. HbA\(_{1c}\) is specifically eluted after washing away the hemoglobin A\(_{1a+b}\) fraction (HbA\(_{1a+b}\))\(^{12}\).

Statistical analysis:
Statistical Package for Social Studies (SPSS) for Windows Version 10.0 was used to analyse the data. All values were expressed as mean ± S.D. Significant differences between means determined by using the student t-test, and \(p\) value of <0.05 was considered statistically significant. Pearson correlation was applied to correlate between the fasting blood sugar (mg/dl) and percentage level HbA\(_{1c}\).

Results
Age, gender, and duration of diabetes (mean±SD) of diabetic patients and healthy control are shown in table 1. The level of mean HbA\(_{1c}\) for group 1, group 2, and healthy control are shown in table 2 and figure 1.

| Table 1. Age, gender, and duration of diabetes (mean±S.D) of patients and healthy control |
|--|------------------|------------------|------------------|
| Age | Group 1 58.11±8.2 | Group 2 57.01±6.12 | Healthy control 57.68±7.1 |
| Gender | | | |
| Male | 50% (n=20) | 47.5% (n=19) | 20% (n=20) |
| Female | 20% (n=20) | 52.5% (n=21) | 20% (n=20) |
| Duration of diabetes (years) | 8.42±4.7 | 5.22±2.3 | --- |
Table 2. The level of mean HbA\textsubscript{1c} for group 1, group 2, and healthy control

<table>
<thead>
<tr>
<th>HbA\textsubscript{1c} levels</th>
<th>Group 1 cases</th>
<th>Group 2 cases</th>
<th>healthy control</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.947±1.40</td>
<td>7.908±0.45</td>
<td>6.462±0.07</td>
<td>0.002a 0.001b</td>
</tr>
</tbody>
</table>

a group 1 cases vs. group 2 cases
b group 1 cases vs. healthy control

There was very low correlation between fasting blood sugar and HbA\textsubscript{1c} (\(r = +0.331; p<0.05\)) in type 2 diabetes cases associated with septic foot (figure 2).
Discussion
Type 2 DM is an important health issue in the world. The number of people with type 2 diabetes, especially in developing countries, is expected to double in this and next decade and diabetes will be more prevalent in younger populations than in the past. Foot disorders are a major source of morbidity and a leading cause of hospitalization for persons with diabetes mellitus. Costs of treating diabetic foot ulcers increase dramatically if patients require inpatient care and represent a substantial drain on health service resources. Furthermore, diabetic foot ulceration has a profound social impact with patients reporting stigma, social isolation, loss of social role, and unemployment. Quality of life is also reduced, and recent findings suggest that depression is more prevalent than in general diabetes. At present, HbA1c measurements are accepted as the “golden standard” for assessing long-term glycemic control. They provide an estimate of the average of blood glucose concentration during the last 2–3 months. However, to our knowledge, there is no data concerning the relationship between HbA1c levels and diabetic complications mainly foot ulcer. From the clinical point of view, it is therefore interesting to analyze the HbA1c levels in relation to diabetes with foot ulcer. Our study showed that the level of HbA1c (%) in group 1 cases was 9.947±1.40%, while in group 2 cases was 7.908±0.45 compared to healthy control which was 6.462±0.07. There is significant increase in percentage level of HbA1c in diabetic patients with septic foot compared to diabetic patients without septic foot and healthy control (p = 0.002, 0.001 respectively).

Fasting blood glucose is routinely tested in most patients who regularly attend the diabetic clinics. However, in the present study we found very low correlation between fasting blood sugar and HbA1c (r = + 0.331; p< 0.05 “p= 0.042”) in diabetic patients with septic foot. A single fasting blood glucose measurement only gives an indication of the patient's immediate past (last 1 to 2 hours) condition, and may not represent the true status of blood glucose regulation. In contrast, the level of HbA1c is directly related to the average glucose concentration over the life-span of the hemoglobin in the circulation. Since uncontrolled hyperglycemia is one of the most frequent risk factors for foot ulceration, we may conclude that the progression to the complication of foot ulcer in type 2 diabetic patients under poor glycemic control is correlated to the level of HbA1c. These data suggest a beneficial effect in terms of considering measurement of HbA1c as a routine test instead of fasting blood glucose especially for elderly diabetic patients with diabetes for long time. This may help to maintain blood glucose levels in the normal or near normal range and to provide an opportunity for patients to live out their normal life expectancies with minimal complications.

References:
8. Wrobel, J. S., Mayfield, J. A., Reiber, G. E. Geographic variation of lower-extremity major amputation in individuals with and without diabetes in

