Special Article

Challenges in prevention and control of schistosomiasis in the Sudan
Mutamad A.Amin* and Durria Mansour Elhussin*

Background

The World Health Organization (WHO) estimated that 200 million people are infected with schistosomiasis and 600 million are at risk of infection in more than 76 countries¹. Recently the at risk population has been updated to 779 million. Many of those with schistosomiasis are in sub-Saharan Africa². In 1984 WHO adopted a strategy to control schistosomiasis morbidity. Chemotherapy was the main operational component of this strategy focusing on school age children and other high risk groups³. In 1993, the WHO recommended that in areas of high prevalence morbidity control remains the strategy of choice and if resources permit, strategies for transmission control can also be envisaged in all areas⁴. When morbidity control became the preferred strategy, schistosomiasis control programmes have increasingly been integrated into primary health care settings and schools⁵,⁶,⁷.

The history of scistosomiasis in the Sudan was reviewed by several workers⁸,⁹ within the whole of the Sudan there has been over the last ten years a serious increase in endemicity and prevalence of both Schistosoma mansoni and S. haematobium infections as a result of progressive expansion in water resource projects, population movements and limited control measures. More than seven million people are expected to be infected in the Sudan as projected by the Director of the National Schistosomiasis Control Programme, 2009 personal communication.

Interest in prevention and control of schistosomiasis in the Sudan had been intensified by the establishment of the Gezira Irrigation Scheme in 1925 and the successful treatment of schistosomiasis by antimony tartarate as a result of the work of Christopherson in Khartoum hospital in 1918. The health authorities were well aware of the consequences of bilharzias in the Gezira irrigation Scheme – failure to prevent would be disastrous and probably irreversible¹⁰. Measures adopted included screening of workers and compulsory treatment of infected people¹⁰. After trials copper sulphate and mechanical barriers were introduced as snail control measures¹¹,¹². However, because of insensitivity of the direct smear method of stool diagnosis and the inefficiency of the antimony drug and increased population movements, prevalence of schistosomiasis increased steadily and by the 1970s

Prevalence rates of up to 70% were reported in school children¹³. In late 1967 a Bilharzia Department was established at Ministry of Health, National Public Health Laboratories. During the period from 1967 to 1970 studies were initiated to evaluate the use of copper sulphate and mechanical barriers in the control of schistosomiasis¹⁴,¹⁵.

In 1970 the London Khartoum Bilharzia Project (Agreement between London School of Hygiene and Tropical Medicine, Faculty of Medicine University of Khartoum and the National Council for Research in collaboration with the Ministry of Health) was established.

The long term objective of the project was to recommend evidence-based schistosomiasis control procedures for the Gezira Scheme. The outcomes of the project were documented in several publications¹⁶—²². The findings of these studies formed the basis of the schistosomiasis control strategies within the comprehensive integrated plan of the Blue Nile Health Project (BNHP) which was established in 1979 to control malaria, schistosomiasis and diarrhoeal diseases in
Gezira-Managil and Rahad Schemes. The BNHP was a joint venture between the Sudan Government represented by the Ministry of Health and the World Health Organization. The goals of the project were to maintain the prevalence of Malaria at or below 2%, reduce schistosomiasis from the 1979 figure of well over 50% to 10% and to reduce mortality due to diarrhoeal diseases. The BNHP (1979—1990) was a great success story in the history of control of water associated diseases²³,²⁴. This success could not be sustained due to lack of funding and shortages in public health infrastructure and the mission was unaccomplished after termination of funding in Rahad and Gezira-Manigle zones²⁵.

The following elements challenge the prevention and control of schistosomiasis.

1. Lack of Recognition.
One of the main challenges facing the prevention and control of schistosomiasis in the Sudan has been the lack of recognition given to the schistosomiasis problem, the lack of awareness and political will. While control successes were achieved in some areas of Sudan, they could not be sustained due to lack of funding.

Schistosomiasis is not regarded as a public health priority by policy makers and health authorities in most endemic countries and as such receives little or none financial support. WHO assigned thirteen diseases including schistosomiasis as Neglected Tropical Diseases (NTDs). Schistosomiasis is neglected simply because it is more difficult to include chronic disability and illness into the agenda of ministries of health, especially in presence of more important diseases such as HIV/AIDS, TB and Malaria.

2-The need for a national control plan
To convince decision makers a sound cost-effective national plan with a clear strategy and objectives should be produced. The basis of the plan can be envisaged as follows:

• Epidemiology / public health importance
 Apart from the Gezira Scheme, there is lack of information regarding epidemiology of schistosomiasis in all other states of the Sudan

An adequate appraisal of the epidemiology of the disease, (transmission, morbidity, disease burden socio-economic aspects etc) is necessary in order to develop a sound control strategy. (Informal consultation on schistosomiasis. WHO, Geneva, 1998). In 1993, the World Bank Development Report (Investing in Health) introduced a system of disability adjusted life years lost (DALYs) as a measure of disease burden.

Country-specific data for the burden for schistosomiasis could support the justification for control.

• Integration with related diseases
A cost-effective approach is to integrate schistosomiasis with the control of other related diseases like malaria and soil-transmitted helminthes. An example of a success story was the Blue Nile health Project, Sudan²⁵.

• Integration into primary health care settings
The greatest challenge is to extend diagnosis and regular chemotherapy coverage as a public health intervention to reach all individuals at risk of the morbidity caused by schistosomiasis. Vertical campaigns are no longer appropriate. Since the late 1970s, when morbidity control became the preferred strategy, schistosomiasis control programmes have increasingly been integrated into primary health care settings and schools²⁶,²⁷

The National Schistosomiasis Control Programme in the Sudan operates from Khartoum. 12 states out of 26 are targeted. Praziquantel, when available, is transferred from Khartoum to the infected subjects only during campaigns organized centrally. The drug is not available at health settings in all targeted states.

• Intersectoral cooperation
Transmission control requires an intersectoral approach and multi-angle control efforts for water supply, sanitation and environmental management.

• Snail surveys and focal snail mollusciciding are necessary to interrupt transmission especially in the presence of migration and displacement and irregular supply of drugs.
3- Capacity building needs
Improved capacity is needed at all levels of the health system, particularly the periphery to improve accessibility to drugs and diagnosis as well as snail control, where feasible.

4) Population movements
The impact of population movements on transmission and control of schistosomiasis has been demonstrated in several countries. In Sudan imported and migrant agricultural labourers played a significant role in the spread of schistosomiasis in water resource development schemes and challenges prevention and control of schistosomiasis\(^\text{28,29}\). Massive population movements to northern states from western Sudan took place during the flooding and famine in 1988 or from the Southern Sudan and Darfur as a result of civil wars. Most of the people settle near irrigation schemes and banks of the White and Blue Niles where transmission occurs. Active transmission was reported recently in the shores of the White Nile and irrigation schemes around Khartoum State.

5- New water resource development projects
The role of water resource development schemes in the spread of schistosomiasis has been discussed by several authors\(^\text{8,26,27,30}\). Two huge projects are under construction in the Sudan: The Merowe High Dam, in Northern State, also known as Merowe Multi-Purpose Hydro-Project or Hamadab Dam. Its dimensions make it the largest contemporary project in Africa. The White Nile Sugar Scheme with an area of about 250,000 acres. Water is now flowing in both projects and displacement, migration and settlement are taking place.

There is a need for health, environmental and social impact assessment in these two newly developing projects. Schistosomiasis has a stake in both environmental impact assessment (EIA) and social impact assessment (SIA). Preventive measures should be introduced to minimize the risks of transmission.

Recommendations
The following recommendations are thought to be relevant to situation in Sudan.
1-support and commitment from top decision makers is highly required for successful and sustainable control of schistosomiasis
2-There is a need for a cost-effective comprehensive integrated national plan with clearly defined objectives and strategies. Specific data for the burden of the disease could support the justification for control.
3- Plans of action at state levels and plans of operation at district levels have to be developed. Vertical campaigns are no longer appropriate. Control activities need to be integrated into primary health care settings and schools.
3- There is a need for capacity building at state and district levels (accessibility of drugs, a capacity to diagnose, and a capacity to treat and capacity for snail control.)
4-There is a need for health, environmental and social impact assessment in the newly developing dams and irrigation schemes.
4- A budget item for prevention and control of schistosomiasis and related water associated diseases need to be included in the budget of water resource development projects.
5- Operational research is required to improve intervention strategies, diagnostic techniques and to facilitate human behaviour change and social science and to address many other questions.

References:
15. Amin MA. Large-scale assessment of the molluscicides Copper Sulphate and N-trityl morpholine (Frescon) on the North Group of the Gezira irrigated Area.*Journal of Tropical Medicine and Hygiene* 1972; 75:169-175.
16. Amin MA. The Schistosomiasis Control Project in the Gezira irrigated area, Sudan.*W.H.O./Schisto*1972/ 30